
The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi Clinic
Editor, on 76004.3437@compuserve.com

or write/fax us at The Delphi Magazine

Paradox Tables On A CD

QI have an application with as-
sociated Paradox tables that

I have burnt onto a CD. If I put the
CD into a network CD drive, the
program doesn’t run properly:
IDAPI tries to write lock files onto
the (obviously) read-only device.
Can I stop this?

ABorland also fell foul of this
problem. The old BDE stand-

alone package came on a CD and
also exhibited these symptoms.
What you need to do is apply a
directory lock to the directory that
houses the files and then copy all
the files, including locks, onto the
CD. The question then is how to
apply a directory lock. If you look
in the directory \RUNIMAGE\DELPHI\

DEMOS\DATA on your Delphi CD
you’ll notice the two lock files:
PARADOX.LCK and PDOXUSRS.LCK.

Record locks are applied when
calling TTable.Edit and table locks
are applied by TTable.LockTable,
but Delphi offers no help for direc-
tory locks. You need to ask IDAPI to
put a persistent lock on a non-
existent table called PARADOX.DRO.
This can only be done if local share
has been turned on in the BDE
configuration program. The code
to do this is only one line, if you
have access to the database handle
(as opposed to a table handle). To
demonstrate its use, there is an
example program on the disk
called DIRLOCK.DPR, which takes
rather more than one line. It caters
for a number of things: real data-
base aliases, temporary database
aliases and Delphi 2 multiple ses-
sions (temporary aliases can be
made in any of a number of
sessions). See Figure 1.

At start-up, the program ensures
that local share is on with a call to

DbiGetSysConfig and warns if it
isn’t. Also, to ensure successful
execution under Delphi 2 it calls
Session.Open first. In Delphi 1, the
single TSession component Session
was automatically opened at start-
up in a database program. In Delphi
2, where there can be many
sessions, they are opened when re-
quired by the database compo-
nents. If you wish to use IDAPI
manually before this time, you
need to open a relevant session.
See Listing 1.

Multi-Record Object Bias

QWhy can’t I place TDBImage or
TDBMemo controls on a Delphi

2 TDBCtrlGrid? I notice that the
front cover of Issue 5 had a picture
showing that it can be done.

AApparently that screenshot
came from Borland during

the Delphi 2 beta program and the
VCL has been through a few
changes since then. For an object
to work in conjunction with the da-
tabase control grid, otherwise
known as the multi-record object
(MRO), it must support replication:
the MRO duplicates the object in
each of its panes. The two data-
aware controls you mention do not
have this support. I don’t know
why this is, as it seems easy to get
them working. The two compo-
nents TDBRepMemo and TDBRepImage
in Listing 2 (REPCTRLS.PAS) show
how to achieve this.

A Delphi 2 project on this
month’s disk, MROPROB.DPR,
proves the point (provided you in-
stall the components on the com-
ponent palette) and looks like
Figure 1: pretty much the same as
the picture on Issue 5’s cover.

Incidentally, you do encounter a
small problem with the data aware

{ Initialise BDE in Delphi 2, before using IDAPI. Delphi 1 does this for you }
{$ifdef Win32}
 Session.Open;
{$endif}
 { Check for local share. If not on, raise exception }
 Check(DbiGetSysConfig(Cfg));
 if not Cfg.bLocalShare then
 raise EDatabaseError.Create(
 ’Local share must be on for successful directory locking’);
...
{ Local share must be on in BDE Config for this to work. To be compatible
with Delphi 2 which can have databases open and defined in multiple
sessions, the session must be passed along. In Delphi 1, this is simply the
Session variable. In Delphi 2 it is the dataset’s DBSession property }

procedure DirectoryLock(const DatabaseName: String;
 Session: TSession; LockDir: Boolean);
const
 DirectoryReadOnly = ’Paradox.DRO’;
 LockOrRel: array[Boolean] of function(hDb: hDBIDb; pszTblNam,
 pszDrvType: PChar): DBIResult {$ifdef Win32}stdcall{$endif}
 = (DbiRelPersistTableLock, DbiAcqPersistTableLock);
begin
 with Session, OpenDatabase(DatabaseName) do
 try
 Check(LockOrRel[LockDir](Handle, DirectoryReadOnly, szParadox));
 finally
 CloseDatabase(FindDatabase(DatabaseName));
 end;
end;

➤ Listing 1

56 The Delphi Magazine Issue 11

memo component on a data con-
trol grid. Normally, Enter and
Ctrl+Enter are taken by the memo
as a new line character. When
placed on an MRO, the grid
intercepts the Enter key and takes
it as a toggle for editing the dataset.
To stop it doing this for the memo
control requires making a new
component based on the
TDBCtrlGrid and writing a cm_Child-
Key message handler. Code for this
is also in REPCTRLS.PAS, and is
shown in Listing 3.

Copying Tables

QWhen copying a table using
the TBatchMove component,

or a table’s BatchMove method, no
indexes are made on the destina-
tion table, even when some are pre-
sent on the source table. How do I
create matching indexes when
batch moving?

AYou can make use of meth-
ods and properties of the ta-

ble to find what indexes are on the
source and create them on the tar-
get. Listing 4 shows three subrou-
tines that can be used to copy a
table, a table’s structure (fields and
indexes) or just a record. These are
used in the COPYING.DPR project
on this month’s disk.

Delphi 2 Is Slooowww

QHow can the same things
take much longer time to

compile in Delphi 2 than in Delphi
1? Borland say the new 32-bit Del-
phi 2 runs much faster than the
16-bit Delphi 1. Also, why does the
MASTAPP.DPR demo project take 5
seconds to start from Delphi 1 and
10 seconds from Delphi 2? I have
plenty of memory to spare, I have
32Mb on a 133 MHz Pentium.

AWe thought this was one for
Borland, so the response

below is based on information from
Danny Thorpe of Borland USA:

There are a number of questions
here, and a number of reasons to
go through. Lets start with the
compilation speed first of all. The
32 bit DCU format is more version-
resilient than the 16 bit format.

➤ Figure 2

➤ Figure 1:
Trying to
open a table
in a read-only
directory

type
 TDBRepMemo = class(TDBMemo)
 public
 constructor Create(AOwner: TComponent); override;
 end;
 TDBRepImage = class(TDBImage)
 public
 constructor Create(AOwner: TComponent); override;
 end;

constructor TDBRepMemo.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 ControlStyle := ControlStyle + [csReplicatable];
end;

constructor TDBRepImage.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 ControlStyle := ControlStyle + [csReplicatable];
end;

➤ Listing 2

type
 TDBRepCtrlGrid = class(TDBCtrlGrid)
 protected
 procedure CMChildKey(var Msg: TWMKeyDown); message cm_ChildKey;
 end;

procedure TDBRepCtrlGrid.CMChildKey(var Msg: TWMKeyDown);
begin
 if not ((Msg.CharCode = vk_Return) and
 (Screen.ActiveForm.ActiveControl is TDBMemo)) then
 inherited;
end;

➤ Listing 3

July 1996 The Delphi Magazine 57

This means that 32 bit DCUs
distributed without source code
are much less likely to require
recompilation to be used with
subsequent versions of the Delphi
compiler. Basically, 32 bit DCUs are
version checked on a symbol by
symbol basis. If Unit A uses func-
tion X of unit B, and you modify the
declaration of function X, ie the
parameter list, Unit A will need to
be re-compiled. However, unlike 16
bit Delphi, modifying interfaced
symbols of Unit B which Unit A
does not use (directly or indi-
rectly) will not require Unit A to be
re-compiled.

This will come as a major relief
to users of previous Borland Pascal
products. As these developers will
know from bitter experience, if
they bought a third-party package
that came without unit source code
and Borland then released a new
version of the product, they had to
purchase a new version of the
package.

DCU Format
To accomplish this improved situ-
ation, the 32 bit compiler has to
unpack the DCUs to find the sym-
bol information stored within. In 16
bits, the DCU was pretty much a
snapshot of the compiler’s internal
memory structures for a particular
unit. The 16 bit compiler basically
just loaded the DCU into memory,
added it to a linked list, and moved
on to the next unit. The 32 bit
compiler, however, has to unpack
the DCU, which is a slight perform-
ance hit compared to 16 bit, but
which insulates the DCU file format
from internal compiler structure
changes.

However, this performance hit is
felt only the first time the DCU is
loaded into memory. The 32 bit IDE
caches DCUs in memory to avoid
incurring the DCU load cost. This
means the second compile of a
project in the 32 bit IDE runs almost
entirely in memory – and it is
noticeably faster than 16 bit
Delphi. The first compile of a
project in Delphi 2.0 will be slightly
slower than Delphi 1.0, but the
second and subsequent compiles
will be faster than Delphi 1.0. This
trade-off of performance, memory,

and DCU flexibility fits well with the
Delphi RAD model of iterative or
spiral design: design a little piece,
implement the little piece, compile,
test, and repeat for next piece. As
opposed to the waterfall model,
which says the entire product is
designed to completion, then the
entire product is implemented to
completion, then the entire prod-
uct is tested to completion, which
is non-iterative.

Testing this on my PC, I find this
to be the case. Building the Mas-
tApp demo project takes approxi-
mately 4 seconds in Delphi 1.
Subsequent builds take 3 seconds,
which can be accounted for by my
disk cache. Delphi 2 takes approxi-
mately 5 seconds for the first build,
but 2 seconds for subsequent
builds.

Memory Use
The Delphi 2.0 compiler is rather
more aggressive in its use of
memory than the 16 bit compiler.
The 16 bit compiler was originally
designed to work on machines with
64Kb of RAM. Even though that 16
bit architecture grew to support
640Kb RAM, then multimegabytes
of RAM, it retained many of the
feature limitations of the original
64Kb memory architecture: first
and foremost, it lacked full code
optimisations.

The 32 bit compiler trades mem-
ory thriftiness for outright per-
formance, and that translates into
more features for the same compile
speed. The 32 bit compiler’s inter-
nal structures are laid out to favour
speed over data density. That
speed gain is large enough to allow
the 32 bit compiler to compile the
source code into intermediate
code, optimise the intermediate
code, and emit the optimised
machine code in less time than the
16 bit compiler compiles source
into machine code with fewer
optimisations.

16 bit compiler support for code
optimisations comparable to the
32 bit compiler would make the 16
bit compiler two to three times
slower. Basically, the move to 32
bit instructions and the generous
Win32 memory model gave
Borland full code optimisations for

free, with room to spare. I wonder
what they’ll do with that in the
fullness of time [Would you like to
give us some ideas, Danny?! Editor].

When compiling large projects
with Delphi 2.0, the amount of free,
available physical RAM you should
have available for the compiler is
about 4 times the size of the final
EXE image. To compile a 1Mb EXE
at top speed (that is, without hit-
ting the swap file), you should have
4Mb of RAM free and clear (in
addition to what is required by the
operating system, other apps and
the IDE). To compile a 10Mb EXE at
350,000 lines per minute (and it has
been done – those figures aren’t
dreamt up by a Borland marketing
person), you’ll need 40Mb of physi-
cal RAM. Another way to calculate
this is to add up the file sizes of all
the DCU files that make up the
project, since that’s what you want
to keep in memory.

Windows 95 or NT?
When running under Windows 95,
the intrusive swap file manage-
ment definitely has a negative
impact on Delphi 2’s performance.
Windows NT’s swap file manage-
ment is much smoother. You never
see NT grinding the hard disk after
the machine has been idle for 5
seconds. Windows 95 is also prone
to false out of memory errors if its
swap file grows to fill the hard disk
completely before the machine has
been idle long enough for the
Windows 95 garbage collector to
kick in. Additionally, Windows 95’s
virtual memory performance is
noticeably slower if you configure
it to have a fixed size swap file
(instead of allowing Windows 95 to
dynamically grow the swap file as
needed), so don’t use a fixed-size
swap file.

In general, Windows 95 feels
snappier than Windows NT 3.51,
primarily because of its lower sys-
tem overhead (the lack of security
code and the thin process isola-
tion) and faster graphics. Windows
NT, on the other hand, makes bet-
ter use of large memory machines
(32Mb plus), multiple processors,
and large hard disks (NTFS rules
the land of 1Gb plus disks). And
Windows NT is about as close to

58 The Delphi Magazine Issue 11

unflappable as one can get in
Windows – very important for a
development machine. Appar-
ently, MicroSoft is re-configuring
the graphics system for Windows
NT 4.0 to address the graphics
performance bottleneck.

Even though Windows 95 tends
to run generally quicker than
Windows NT, there are aspects of
the system architecture that play
an important role in slowing down
a 32 bit program.

Despite the quicker graphics
system, when manipulating Win-
dows interface elements such as
listboxes and memos, your code
will suddenly get much slower than
in 16 bit Windows. This is because
all the controls that are common to
16 bit and 32 bit are implemented
in 16 bit code. 32 bit applications
that manipulate these controls call
Windows code that thunks down to
the 16 bit stuff in order to run.

Consider a list box with a lot of
text in it. If you set the Sorted prop-
erty to True, it will take longer for a
32 bit app running on Windows 95
to do it than a 16 bit app running on

Windows 95. The figures on my
machine were 0.49 second for the
32 bit app and 0.38 second for the
16 bit application. Running the
application on Windows NT would
give a better time than either of
these.

If you are writing code that does
a lot of control manipulation,
consider doing it yourself, rather
than letting Windows do it. For
example, if you use a TStringList
object and sort that, it took 0.11
seconds for my PC to sort it in 32
bit, and 0.2 second in 16 bit.

Borland Database Engine
The Borland Database Engine
(BDE) does do a lot of set-up work
when the first application loads
BDE: loading support DLLs, initial-
ising cache memory, detecting and
initialising network support, etc.
And the new 32-bit BDE does rather
more than the 16-bit BDE.

Nevertheless, BDE 3 is notice-
ably slower at loading than BDE 2.5.
That said, there are several things
which help speed up database
applications. The ODBC socket in

BDE 3 is much better, helped by 32
bit ODBC being rather faster.
Cached updates also help out.

Incidentally, the BDE 3 imple-
ments some new caching tech-
niques similar to the IDE’s unit
caching which make subsequent
queries against Paradox and
dBASE tables many times faster
than the first query. The biggest
difference will be seen with large
tables and complex queries.

Acknowledgements
Thanks to Roy Nelson at Borland
for the basis of the Paradox direc-
tory lock technique. Also thanks to
Borland’s Danny Thorpe for the
low down on the 32-bit compiler’s
operation.

60 The Delphi Magazine Issue 11

	Paradox Table On A CD
	Multi-Record Object Bias
	Copying Tables
	Delphi 2 is Slooooowwwwwwwwwwwwwwwwwwww
	DCU Format
	Memory Use
	Windows 95 or NT?
	Borland Database Engine
	Acknowledgements

